题目内容
已知f(x)=xlnx-ax,g(x)=-x2-2,对一切x∈(0,+∞),f(x)≥g(x)恒成立,则实数a的取值范围是 .
考点:函数恒成立问题
专题:计算题,导数的综合应用
分析:对一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx-ax≥-x2-2恒成立,可化为a≤lnx+x+
在x∈(0,+∞)上恒成立.令F(x)=lnx+x+
,利用导数研究其单调性极值与最值即可得出.
| 2 |
| x |
| 2 |
| x |
解答:
解:对一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx-ax≥-x2-2恒成立,即a≤lnx+x+
在x∈(0,+∞)上恒成立.
令F(x)=lnx+x+
,
则F′(x)=
+1-
=
=
,
在(0,1)上F′(x)<0,在(1,+∞)上F′(x)>0,
因此,F(x)在x=1处取极小值,也是最小值,即Fmin(x)=F(x)=3,
∴a≤3.
故答案为:(-∞,3]
| 2 |
| x |
令F(x)=lnx+x+
| 2 |
| x |
则F′(x)=
| 1 |
| x |
| 2 |
| x2 |
| x2+x-2 |
| x2 |
| (x+2)(x-1) |
| x2 |
在(0,1)上F′(x)<0,在(1,+∞)上F′(x)>0,
因此,F(x)在x=1处取极小值,也是最小值,即Fmin(x)=F(x)=3,
∴a≤3.
故答案为:(-∞,3]
点评:该题考查函数恒成立问题,考查利用导数研究函数的最值,考查转化思想,考查学生分析解决问题的能力.
练习册系列答案
相关题目
已知f(x)=x+
,则f(x)为( )
| 1 |
| x |
| A、既是奇函数又是偶函数 |
| B、非奇非偶函数 |
| C、奇函数 |
| D、偶函数 |