题目内容

若函数f(x)=
2x3+3x2+1(x≤0)
eax(x>0)
在[-2,2]上的最大值为2,则实数a的取值范围是
 
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:当x∈[-2,0]上的最大值为2; 欲使得函数f(x)=
2x3+3x2+1(x≤0)
eax(x>0)
在[-2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,从而解得a的范围.
解答: 解:由题意,当x≤0时,f(x)=2x3+3x2+1,可得f′(x)=6x2+6x,解得函数在[-1,0]上导数为负,在[-∞,-1]上导数为正,故函数在[-2,0]上的最大值为f(-1)=2;
要使函数f(x)=
2x3+3x2+1(x≤0)
eax(x>0)
在[-2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,
即e2a≤2,
解得a∈(-∞,
1
2
ln2]

故答案为:(-∞,
1
2
ln2]
点评:本小题主要考查函数单调性的应用、函数最值的应用的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网