题目内容

对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于0,则x的范围是(  )
A、x<1或x>2
B、1<x<2
C、x<1或x>3
D、1<x<3
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:把二次函数的恒成立问题转化为y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.
解答: 解:原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需
(-1)•(x-2)+x2-4x+4>0
1×(x-2)+x2-4x+4>0

x>3 或x<2
x>2或x<1

∴x<1或x>3.
故选C.
点评:此题是一道常见的题型,把关于x的函数转化为关于a的函数,构造一次函数,因为一次函数是单调函数易于求解,对此类恒成立题要注意.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网