题目内容
对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于0,则x的范围是( )
| A、x<1或x>2 |
| B、1<x<2 |
| C、x<1或x>3 |
| D、1<x<3 |
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:把二次函数的恒成立问题转化为y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.
解答:
解:原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需
,
∴
,
∴x<1或x>3.
故选C.
只需
|
∴
|
∴x<1或x>3.
故选C.
点评:此题是一道常见的题型,把关于x的函数转化为关于a的函数,构造一次函数,因为一次函数是单调函数易于求解,对此类恒成立题要注意.
练习册系列答案
相关题目
已知直线l1:4x-3y+11=0和直线l2:x+1=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值为( )
| A、2 | ||
| B、3 | ||
C、
| ||
D、
|
数列
,
,
,
,…的一个通项公式为( )
| 1 |
| 3 |
| 1 |
| 8 |
| 1 |
| 15 |
| 1 |
| 24 |
A、an=
| ||
B、an=
| ||
C、an=
| ||
D、an=
|
若x是纯虚数,y是实数,且2x-1+i=y-(3-y)i,则x+y等于( )
A、1+
| ||
B、-1+
| ||
C、1-
| ||
D、-1-
|
设复数z满足z(a+i)=1+i,若复数z为纯虚数,则实数a=( )
| A、-1 | B、1 | C、-2 | D、2 |
扇形的周长是16,圆心角是2rad,则扇形的面积是( )
| A、16 | B、32 |
| C、16π | D、32π |
若不等式x2-logax≤0在x∈(0,
]内恒成立,则a的取值范围是( )
| 1 |
| 2 |
A、0<a≤
| ||
B、0<a<
| ||
C、
| ||
D、
|