ÌâÄ¿ÄÚÈÝ

ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬´æÔÚ³£ÊýA£¬B£¬C£¬Ê¹µÃan+Sn=An2+Bn+C¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢£®
£¨1£©ÈôÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇóÖ¤£º3A-B+C=0£»
£¨2£©ÈôA=-
1
2
£¬B=-
3
2
£¬C=1£¬Éèbn=an+n£¬ÊýÁÐ{nbn}µÄǰnÏîºÍΪTn£¬ÇóTn£»
£¨3£©ÈôC=0£¬{an}ÊÇÊ×ÏîΪ1µÄµÈ²îÊýÁУ¬Éècn=
1+
2
an2
+
1
an+12
ÊýÁÐ{cn}µÄǰ2014ÏîºÍΪP£¬Çó²»³¬¹ýPµÄ×î´óÕûÊýµÄÖµ£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²î¹ØÏµµÄÈ·¶¨
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃa1+(n-1)d+na1+
1
2
n(n-1)d
=An2+Bn+C£¬ÒòΪ¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢£¬ËùÒÔ
1
2
d-A=0
a1+
1
2
d-B=0
a1-d-C=0
£¬ÓÉ´ËÄÜÖ¤Ã÷3A-B+C=0£®
£¨2£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³öbn=(
1
2
)n
£¬´Ó¶øµÃµ½nbn=
n
2n
£®ÓÉ´ËÀûÓôíλÏà¼õ·¨ÄÜÇó³öÊýÁÐ{nbn}µÄǰnÏîºÍTn£®
£¨3£©ÓÉan=n£¬Öªcn=
1+
2
an2
+
1
an+12
=
n2(n+1)2+(n+1)2+n2
n2(n+1)2
=1+
1
n
-
1
n+1
£®ÓÉ´ËÀûÓÃÁÑÏîÇóºÍ·¨ÄÜÇó³ö²»³¬¹ýPµÄ×î´óÕûÊýµÄÖµ£®
½â´ð£º £¨1£©Ö¤Ã÷£º¡ßÊýÁÐ{an}ΪµÈ²îÊýÁУ¬É蹫²îΪd£¬
ÓÉan+Sn=An2+Bn+C£¬
µÃa1+(n-1)d+na1+
1
2
n(n-1)d
=An2+Bn+C£¬
¡ß¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢£¬
¡à
1
2
d-A=0
a1+
1
2
d-B=0
a1-d-C=0
£¬
¡à3A-B+C=0£®£¨6·Ö£©
£¨2£©½â£º¡ßan+Sn=-
1
2
n2-
3
2
n+1
£¬¡àa1=-
1
2
£¬
µ±n¡Ý2ʱ£¬an-1+Sn-1=-
1
2
(n-1)2-
3
2
(n-1)+1
£¬
¡à2a1-an-1=-n-1£¬
¡à2£¨an+n£©=an-1+n-1£¬
¡àbn=
1
2
bn-1
£¬n¡Ý2£¬
¡ßb1=a1+1=
1
2
£¬
¡àÊýÁÐ{bn}ÊÇÊ×ÏîΪ
1
2
£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ¬
¡àbn=(
1
2
)n
£®£¨9·Ö£©nbn=
n
2n
£®
¡àTn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
¢Ù£¬
1
2
Tn
=
1
22
+
2
23
+
3
24
+¡­+
n
2n+1
£¬¢Ú
µÃ
1
2
Tn
=
1
2
+
1
22
+
1
23
+¡­+
1
2n
-
n
2n+1

=
1
2
[1-(
1
2
)n]
1-
1
2
-
n
2n+1

=1-£¨
1
2
£©n-
n
2n+1

=1-
2+n
2n+1
£®
¡àTn=2-
2+n
2n
£®£¨12·Ö£©
£¨3£©½â£º¡ß{an}ÊÇÊ×ÏîΪ1µÄµÈ²îÊýÁУ¬
ÓÉ£¨1£©Öª£¬¹«²îd=1£¬¡àan=n£¬
¡ßcn=
1+
2
an2
+
1
an+12
=
n2(n+1)2+(n+1)2+n2
n2(n+1)2

=
n(n+1)+1
n(n+1)
=1+
1
n(n+1)
=1+
1
n
-
1
n+1
£®
¡àP=£¨1+
1
1
-
1
2
£©+£¨1+
1
2
-
1
3
£©+£¨1+
1
3
-
1
4
£©+¡­+£¨1+
1
2014
-
1
2015
£©
=2015-
1
2015
£®
¡à²»³¬¹ýPµÄ×î´óÕûÊýµÄÖµÊÇ2014£®
µãÆÀ£º±¾Ì⿼²éµÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁеÄǰnÏîºÍµÄÇ󷨣¬¿¼²é×î´óÕûÊýÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ´íλÏà¼õ·¨ºÍÁÑÏîÇóºÍ·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø