题目内容
计算下列各式的和:
(1)
2n-k
;
(2)
(-1)k(2k+1)
;
(3)
.
(1)
| n |
| k=0 |
| C | k n |
(2)
| n |
| k=0 |
| C | k n |
(3)
| n |
| k=0 |
| 1 |
| k+1 |
| C | k n |
考点:二项式系数的性质
专题:计算题
分析:由条件利用二项式定理,二项式系数的性质,并用倒序向加法进行数列求和,可得所给式子的值.
解答:
解:(1)
2n-k
=(2+1)n=3n;
(2)∵
(-1)k(2k+1)
=
-3
+5
-7
+9
+…+(-1)n(2n+1)
;
∴
(-1)k(2k+1)
=(-1)n•(2n+1)
+(-1)n-1(2n-1)
+…-3
+
∴2
(-1)k(2k+1)
=(2n+1)[
-
+
-
+…+(-1)n
]=(2n+1)(1-1)n=0,
∴
(-1)k(2k+1)
=0.
(3)∵
=
+
+
+…+
,∴
=
+
+…+
+
,
∴2
=(1+
)[
+
+
+…+
]=(1+
)2n,∴
=(1+
)2n-1.
| n |
| k=0 |
| C | k n |
(2)∵
| n |
| k=0 |
| C | k n |
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
∴
| n |
| k=0 |
| C | k n |
| C | n n |
| C | n-1 n |
| C | 1 n |
| C | 0 n |
∴2
| n |
| k=0 |
| C | k n |
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
∴
| n |
| k=0 |
| C | k n |
(3)∵
| n |
| k=0 |
| 1 |
| k+1 |
| C | k n |
| C | 0 n |
| ||
| 2 |
| ||
| 3 |
| 1 |
| n |
| •C | n n |
| n |
| k=0 |
| 1 |
| k+1 |
| C | k n |
| 1 |
| n |
| •C | n n |
| 1 |
| n-1 |
| C | n-1 n |
| ||
| 2 |
| C | 0 n |
∴2
| n |
| k=0 |
| 1 |
| k+1 |
| C | k n |
| 1 |
| n |
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | n n |
| 1 |
| n |
| n |
| k=0 |
| 1 |
| k+1 |
| C | k n |
| 1 |
| n |
点评:本题主要考查二项式系数的性质,用倒序向加法进行数列求和,属于中档题.
练习册系列答案
相关题目