题目内容

已知点F1、F2是两个定点,若p:动点M到两个定点F1、F2的距离之和为一个正常数,q:动点M的轨迹是以F1、F2为焦点的椭圆,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:此题主要是考查椭圆的几何意义.椭圆是到两个定点的距离和为定值的点的集合,并且距离和应该大于两定点之间的距离.
解答: 解:①若点M到F1,F2的距离之和恰好为F1,F2两点之间的距离,则轨迹不是椭圆,所以前者不能推出后者.
②根据椭圆的定义,椭圆到两焦点的距离和为常数2a.所以后者能推出前者.
故前者是后者的必要不充分条件.
故选B.
点评:准确理解椭圆的几何意义是做对此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网