题目内容
2.复数$\frac{2-i}{1+i}$(i为虚数单位)的模为$\frac{\sqrt{10}}{2}$.分析 由复数代数形式的乘除运算化简复数$\frac{2-i}{1+i}$,再由复数求模公式计算得答案.
解答 解:$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
则复数$\frac{2-i}{1+i}$的模为:$\sqrt{(\frac{1}{2})^{2}+(-\frac{3}{2})^{2}}=\frac{\sqrt{10}}{2}$.
故答案为:$\frac{\sqrt{10}}{2}$.
点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
练习册系列答案
相关题目
13.已知复数z满足(1+i)z=2i,则|z|=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
17.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,则z=2x+y的取值范围是( )
| A. | (-∞,+∞) | B. | (-∞,4] | C. | [4,+∞) | D. | [-2,2] |
14.已知函数f(x)=x2+ax+b(a,b∈R),记集合A={x∈R|f(x)≤0},B={x∈R|f(f(x)+1)≤0},若A=B≠∅,则实数a的取值范围为( )
| A. | [-4,4] | B. | [-2,2] | C. | [-2,0] | D. | [0,4] |
11.设a=log32,b=ln2,c=5-0.5,则( )
| A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | c<b<a |
14.下列函数在区间[0,+∞)上是增函数的是( )
①y=2x ②y=x2+2x-1 ③y=|x+2|④y=|x|+2.
①y=2x ②y=x2+2x-1 ③y=|x+2|④y=|x|+2.
| A. | ①② | B. | ①③ | C. | ②③④ | D. | ①②③④ |