题目内容

14.已知$|\overrightarrow a|$=$|\overrightarrow b|$=2,且它们的夹角为$\frac{π}{3}$,则$|\overrightarrow a+\overrightarrow b|$=(  )
A.$2\sqrt{3}$B.$3\sqrt{2}$C.1D.2

分析 由条件进行数量积的运算即可求出$(\overrightarrow{a}+\overrightarrow{b})^{2}$的值,从而求出$|\overrightarrow{a}+\overrightarrow{b}|$的值.

解答 解:根据条件:
$(\overrightarrow{a}+\overrightarrow{b})^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=$4+2×2×2×\frac{1}{2}+4$
=12;
∴$|\overrightarrow{a}+\overrightarrow{b}|=2\sqrt{3}$.
故选A.

点评 考查向量数量积的运算及计算公式,以及要求$|\overrightarrow{a}+\overrightarrow{b}|$而求$(\overrightarrow{a}+\overrightarrow{b})^{2}$的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网