题目内容
11.已知正四棱锥O-ABCD的体积为54,底面边长为$3\sqrt{2}$,则正四棱锥O-ABCD的外接球的表面积为100π.分析 先画出图形,正四棱锥外接球的球心在它的高上,然后根据勾股定理解出球的半径,最后根据球的面积公式解之即可.
解答
解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记球心为O,PO=AO=R,PO1=1,OO1=R-1,或OO1=1-R(此时O在PO1的延长线上),
∵正四棱锥O-ABCD的体积为54,底面边长为$3\sqrt{2}$,
∴$\frac{1}{3}×(3\sqrt{2})^{2}h$=54,
∴h=9,
在Rt△AO1O中,R2=9+(R-9)2得R=5,∴球的表面积S=100π.
故答案为:100π.
点评 本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题.
练习册系列答案
相关题目
19.若方程$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{m-1}$=1表示焦点在y轴上的椭圆,则实数m的取值范围为( )
| A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |