题目内容
已知|
|=1,|
|=2,∠AOB=
,
=x
+y
,且x+2y=1,则|
|的最小值为
.
| OA |
| OB |
| 2π |
| 3 |
| OC |
| OA |
| OB |
| OC |
| 1 |
| 2 |
| 1 |
| 2 |
分析:利用向量的数量积和二次函数的性质即可得出.
解答:解:∵|
|=1,|
|=2,∠AOB=
,
=x
+y
,且x+2y=1,
∴
2=(x
+y
)2=x2+4y2+4xycos
=x2+4y2-2xy=(1-2y)2+4y2-2y(1-2y)
=12y2-6y+1=12(y-
)2+
≥
,当且仅当y=
,x=
时取等号.
∴|
|≥
.
故|
|的最小值为
.
故答案为
.
| OA |
| OB |
| 2π |
| 3 |
| OC |
| OA |
| OB |
∴
| OC |
| OA |
| OB |
| 2π |
| 3 |
=12y2-6y+1=12(y-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
∴|
| OC |
| 1 |
| 2 |
故|
| OC |
| 1 |
| 2 |
故答案为
| 1 |
| 2 |
点评:熟练掌握向量的数量积运算性质和二次函数的性质是解题的关键.
练习册系列答案
相关题目