题目内容
已知|
|=1,|
|=k,∠AOB=
π,点C在∠AOB内,
•
=0,若
=2m
+m
(m≠0),则k= .
| OA |
| OB |
| 2 |
| 3 |
| OC |
| OA |
| OC |
| OA |
| OB |
分析:由点C在∠AOB=
内,
•
=0,可建立如图所示的坐标系.取A(1,0),由|
|=k,
可得B(kcos
,ksin
),再利用
=2m
+m
(m≠0),可得点C的坐标,利用
•
=0,即可解得k.
| 2π |
| 3 |
| OC |
| OA |
| OB |
可得B(kcos
| 2π |
| 3 |
| 2π |
| 3 |
| OC |
| OA |
| OB |
| OC |
| OA |
解答:解:由点C在∠AOB=
内,
•
=0,可建立如图所示的坐标系.
取A(1,0),
∵|
|=k,∴B(kcos
,ksin
),即B(-
k,
k).
∴
=2m
+m
(m≠0),
∴
=2m(1,0)+m(-
k,
k)=(2m-
mk,
mk).
∵
•
=0,
∴2m-
mk=0,
∵m≠0,∴2-
k=0,解得k=4.
故答案为:4.
| 2π |
| 3 |
| OC |
| OA |
取A(1,0),
∵|
| OB |
| 2π |
| 3 |
| 2π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
∴
| OC |
| OA |
| OB |
∴
| OC |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
∵
| OC |
| OA |
∴2m-
| 1 |
| 2 |
∵m≠0,∴2-
| 1 |
| 2 |
故答案为:4.
点评:本题考查了通过建立直角坐标系解决向量问题、向量的运算法则、向量的数量积与垂直的关系,属于中档题.
练习册系列答案
相关题目