题目内容

6.已知复数z的共轭复数为$\overline{z}$,且满足z-2$\overline{z}$=2+3i,其中i为虚数单位,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.5D.$\sqrt{5}$

分析 设z=a+bi,得到$\overline{z}$=a-bi,根据系数相等求出a,b的值,从而求出|z|即可.

解答 解:设z=a+bi,则$\overline{z}$=a-bi,
由z-2$\overline{z}$=2+3i,得-a+3bi=2+3i,
∴a=-2,b=1,
∴|z|=$\sqrt{5}$,
故选:D.

点评 本题考查了复数求模问题,考查共轭复数,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网