题目内容

12.已知圆M:x2+y2-2ax=0(a<0)截直线x-y=0所得线段的长度是$2\sqrt{2}$,则圆M与圆N:(x-2)2+(y-1)2=9的位置关系是(  )
A.内切B.相交C.外切D.相离

分析 根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.

解答 解:圆M圆心坐标为(a,0),由题意得${a^2}={({\frac{|a|}{{\sqrt{2}}}})^2}+{({\sqrt{2}})^2}$且a<0,解得a=-2,
则$1<|{MN}|=\sqrt{17}<5$,
故选B.

点评 本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网