题目内容
12.已知圆M:x2+y2-2ax=0(a<0)截直线x-y=0所得线段的长度是$2\sqrt{2}$,则圆M与圆N:(x-2)2+(y-1)2=9的位置关系是( )| A. | 内切 | B. | 相交 | C. | 外切 | D. | 相离 |
分析 根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.
解答 解:圆M圆心坐标为(a,0),由题意得${a^2}={({\frac{|a|}{{\sqrt{2}}}})^2}+{({\sqrt{2}})^2}$且a<0,解得a=-2,
则$1<|{MN}|=\sqrt{17}<5$,
故选B.
点评 本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.
练习册系列答案
相关题目
3.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为( )
| A. | y=x2-1 | B. | y=x2+1 | C. | y=(x-1)2 | D. | y=(x+1)2 |
17.函数$y=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,则( )

| A. | $y=3sin({2x-\frac{π}{6}})$ | B. | $y=3sin({2x-\frac{π}{3}})$ | C. | $y=3sin({x-\frac{π}{6}})$ | D. | $y=3sin({x-\frac{π}{3}})$ |
2.
如图所示,四边形ABCD是菱形,边长为2,∠BAD=60°,E为边AD的中点,点F在边AB上运动,点A关于直线EF的对称点为G,则线段CG的长度最小值为( )
| A. | $\sqrt{7}-1$ | B. | 2 | C. | $\sqrt{5}-1$ | D. | $\sqrt{3}$ |