题目内容
17.已知函数$f(x)=\frac{{{x^2}-6x+4a}}{4x}-lnx$,其中a∈R(1)若函数f(x)在(0,+∞)单调递增,求实数a的取值范围
(2)若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求函数f(x)的单调区间与极值.
分析 (1)求得函数的导数,哟偶题意可得f'(x)≥0在(0,+∞)恒成立,即$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$≥0,即有a≤$\frac{{x}^{2}-4x}{4}$,求得右边函数的最小值,即可得到所求范围;
(2)求得导数,求得切线的斜率,解方程可得a,再由导数大于0,可得增区间;导数小于0可得减区间,进而得到极值.
解答 解 (1)对f(x)求导得f′(x)=$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$,
函数f(x)在(0,+∞)单调递增,
∴f'(x)≥0在(0,+∞)恒成立,
即$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$≥0,即有a≤$\frac{{x}^{2}-4x}{4}$,
由$g(x)=\frac{{{x^2}-4x}}{4}=\frac{{{{(x-2)}^2}-4}}{4}≥-1$,
∴a≤-1,即有a的取值范围(-∞,-1];
(2)对f(x)求导得f′(x)=$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$,
由f(x)在点(1,f(1))处的切线垂直于直线y轴,
可知f′(1)=-$\frac{3}{4}$-a=0,解得a=$-\frac{3}{4}$,
知$f(x)=\frac{x}{4}-\frac{3}{4x}-lnx-\frac{3}{2}$,
则f′(x)=$\frac{{{x^2}-4x+3}}{{4{x^2}}}$,
令f′(x)=0,解得x=1或x=3,
| x | (0,1) | 1 | (1,3) | 3 | (3,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
函数f(x)在x=1时取得极大值f(1)=-2,
f(x)在x=3时取得极小值f(3)=-1-ln3.
点评 本题考查导数的运用:求切线的斜率和单调区间、极值,考查参数分离和二次函数的最值的求法,属于中档题.
| A. | 12 | B. | $2\sqrt{3}$ | C. | $4\sqrt{3}$ | D. | $\frac{4}{3}\sqrt{3}$ |
| A. | 44 | B. | 32 | C. | 10+6$\sqrt{17}$ | D. | 22+6$\sqrt{17}$ |
| 直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
| 件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ-σ<X≤μ+σ)≥0.6826.②P(μ-σ<X≤μ+2σ)≥0.9544③P(μ-3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.
(2)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品
(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;
(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.