题目内容

15.已知f(x)=sinx+cosx(x∈R),令f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),则f2018($\frac{π}{4}$)=(  )
A.1B.$\sqrt{2}$C.-$\sqrt{2}$D.0

分析 由题意求解可得周期为4,可得f2018(x)=f2(x),代值计算可得.

解答 解:∵f(x)=sinx+cosx(x∈R),
∴f1(x)=f′(x)=cosx-sinx,
∴f2(x)=f1′(x)=-sinx-cosx,
∴f3(x)=f2′(x)=-cosx+sinx,
∴f4(x)=f3′(x)=sinx+cosx,
∴函数fn+1(x)的周期是4,
∴由周期性可得∴f2018(x)=f2(x)=sinx+cosx
∴f2018($\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$=-$\sqrt{2}$
故选:C.

点评 本题考查导数的运算,涉及三角函数的导数和周期性,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网