题目内容

已知函数f(x)=f′(
π
4
)cosx+sinx,则f(
π
4
)=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f′(
π
4
)=-f′(
π
4
)sin
π
4
+cos
π
4
,从而f(x)=(
2
-1)cosx+sinx,由此能求出f(
π
4
).
解答: 解:由f(x)=f′(
π
4
)cosx+sinx,得f′(x)=-f′(
π
4
)sinx+cosx,
所以f′(
π
4
)=-f′(
π
4
)sin
π
4
+cos
π
4

f′(
π
4
)=-
2
2
f′(
π
4
)+
2
2

解得f′(
π
4
)=
2
-1.
所以f(x)=(
2
-1)cosx+sinx
则f(
π
4
)=(
2
-1)cos
π
4
+sin
π
4
=
2
2
2
-1
)+
2
2
=1.
故答案为:1.
点评:本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网