题目内容
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:(Ⅰ)若f(x)为“局部奇函数”,则根据定义验证条件是否成立即可;
(Ⅱ)根据f(x)为定义域R上的“局部奇函数,得到f(-x)=-f(x),恒成立,建立条件关系即可求实数m的取值范围.
(Ⅱ)根据f(x)为定义域R上的“局部奇函数,得到f(-x)=-f(x),恒成立,建立条件关系即可求实数m的取值范围.
解答:
解:(Ⅰ)若f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m•2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在t≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
≤m≤1+
,
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
,
解得1+
<m≤2
.
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
≤m≤2
.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m•2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在t≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
| 3 |
| 3 |
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
|
解得1+
| 3 |
| 2 |
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
| 3 |
| 2 |
点评:本题主要考查与函数奇偶性有关的新定义,根据条件建立方程关系是解决本题的关键,考查学生的计算能力.
练习册系列答案
相关题目
对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量的集合Y={
|
=(s,t),s∈X,t∈X},若对任意
1∈Y,存在
2∈Y,使得
l•
2=0,则称X具有性质P.例如{-1,1,2}具有性质P.若X具有性质P,且x1=1,x2=q(q为常数),则有穷数列x1,x2,…,xn的通项公式为( )
| a |
| a |
| a |
| a |
| a |
| a |
| A、xi=qi-1,i=1,2,…,n | ||||
| B、xi=1+(i-1)(q-1)i-1,i=1,2,…,n | ||||
| C、xi=1+(i-1)q,i=1,2,…,n | ||||
D、xi=
|