题目内容

5.如图是幂函数$y={x^{α_i}}$(αi>0,i=1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,${α_4}=\frac{1}{2}$,${α_5}=\frac{1}{3}$,已知它们具有性质:
①都经过点(0,0)和(1,1);   ②在第一象限都是增函数.
请你根据图象写出它们在(1,+∞)上的另外一个共同性质:α越大函数增长越快.

分析 由幂函数的图象及其性质不难得到:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y=x对称;⑧当α>1时,图象在直线y=x的上方;当0<α<1时,图象在直线y=x的下方.
从上面任取一个即可得出答案.

解答 解:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y=x对称;⑧当α>1时,图象在直线y=x的上方;当0<α<1时,图象在直线y=x的下方.
从上面任取一个即可得出答案.
故答案为:α越大函数增长越快.

点评 本题考查了幂函数的图象与性质,考查了数形结合能力、推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网