题目内容
设x,y满足
,则z=x+y的最小值为( )
|
| A、-8 | B、-7 | C、-6 | D、-5 |
考点:简单线性规划
专题:不等式的解法及应用
分析:先画出约束条件
的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数x+y的最小值.
|
解答:
解:由约束条件
得如图所示的三角形区域,
令x+y=z,y=-x+z,
显然当平行直线过点B时,z取得最小值;由
,可得B(-3,-4),
此时z=-7.
故选:B.
|
令x+y=z,y=-x+z,
显然当平行直线过点B时,z取得最小值;由
|
此时z=-7.
故选:B.
点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
练习册系列答案
相关题目
函数f(x)=log
(x2+3x-4)的单调递增区间为( )
| 1 |
| 2 |
| A、(0,+∞) |
| B、(-∞,0) |
| C、(1,+∞) |
| D、(-∞,-4) |
若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下面命题正确的是( )
| A、若m?β,α⊥β,则m⊥α |
| B、若α∩γ=m,β∩γ=n,则α∥β |
| C、若m⊥β,m∥α,则α⊥β |
| D、若α⊥β,α⊥γ,则β⊥γ |
从只含有二件次品的10个产品中取出三件,设A为“三件产品全不是次品”,B为“三件产品全是次品”,C 为“三件产品不全是次品”,则下列结论正确的是( )
| A、事件A与C互斥 |
| B、事件C是随机事件 |
| C、任两个均互斥 |
| D、事件B是不可能事件 |
函数f(x)=1-xlnx的零点所在区间是( )
A、(0,
| ||
B、(
| ||
| C、(1,2) | ||
| D、(2,3) |
从20名高一学生、20名高二学生和10名高三学生且有艺术特长的学生中,选1人参加元旦文艺演出,共有选法种数为( )
| A、50 | B、10 | C、60 | D、500 |
在△ABC中,sinAsinC>cosAcosC,则△ABC一定是( )
| A、锐角三角形 | B、直角三角形 |
| C、钝角三角形 | D、不确定 |
在等差数列{an}中,a1=15,d=-2,则a9=( )
| A、-1 | B、1 | C、2 | D、-3 |