题目内容

经过椭圆
x2
2
+y2=1的左焦点F1作倾斜角为60°的直线l,直线l与椭圆相交于A,B两点,求AB的长.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出椭圆的左焦点F1(-1,0),根据点斜率式设AB,方程与椭圆方程消去y,利用根与系数的关系,根据弦长公式即可算出弦AB的长.
解答: 解:∵椭圆方程为
x2
2
+y2=1,
∴焦点分别为F1(-1,0),F2(1,0),
∵直线AB过左焦点F1倾斜角为60°,
∴直线AB的方程为y=
3
(x+1),
将AB方程与椭圆方程消去y,得7x2+12x+4=0
设A(x1,y1),B(x2,y2),可得
x1+x2=-
12
7
,x1x2=
4
7

∴|x1-x2|=
(-
12
7
)2-4×
4
7
=
4
2
7

因此,|AB|=
1+3
•|x1-x2|=
8
2
7
点评:本题给出椭圆经过左焦点且倾角为30度的弦AB,求弦长.着重考查了椭圆的标准方程与简单几何性质、直线与椭圆的位置关系等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网