ÌâÄ¿ÄÚÈÝ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl1¹ýÍÖÔ²CµÄ½¹µã¼°µãB£¨0£¬-2$\sqrt{3}$£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßl2¹ýÍÖÔ²CµÄ×ó½¹µãF£¬½»ÍÖÔ²CÓÚµãP¡¢Q£¬ÈôÖ±Ïßl2ÓëÁ½×ø±êÖá¶¼²»´¹Ö±£¬ÊÔÎÊxÖáÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃMFǡΪ¡ÏPMQµÄ½Çƽ·ÖÏߣ¿Èô´æÔÚ£¬ÇóµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Ö±Ïßl1¹ýÍÖÔ²CµÄÓÒ½¹µã£¨c£¬0£©£¬$\frac{-2\sqrt{3}-0}{0-c}=\sqrt{3}$£¬µÃc=2£¬ÓÖÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬µÃ$\frac{3}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
£¨¢ò£©ÉèµãM£¨m£¬0£©£¬×ó½¹µãΪF£¨-2£¬0£©£¬ÉèÖ±ÏßPQµÄ·½³Ì£¬ÓëÍÖÔ²ÁªÁ¢£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢½Çƽ·ÖÏßÐÔÖÊ¡¢ÍÖÔ²ÐÔÖÊ£¬½áºÏÒÑÌõÌõ¼þÄÜÇó³öµãM×ø±ê£®

½â´ð ½â£¨¢ñ£©Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl1¹ýÍÖÔ²CµÄ½¹µã¼°µãB£¨0£¬-2$\sqrt{3}$£©£®ÔòÖ±Ïßl1¹ýÍÖÔ²CµÄÓÒ½¹µã£¨c£¬0£©
$\frac{-2\sqrt{3}-0}{0-c}=\sqrt{3}$£¬¡àc=2£¬
ÓÖ¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬¡à$\frac{3}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
ÇÒa2=b2+4£¬½âµÃa2=6£¬b2=2£®
¡àÍÖÔ²CµÄ·½³Ì£º$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£®
£¨¢ò£©ÉèµãM£¨m£¬0£©£¬×ó½¹µãΪF£¨-2£¬0£©£¬¿ÉÉèÖ±ÏßPQµÄ·½³ÌΪx=$\frac{y}{k}-2$£¬
ÓÉ$\left\{\begin{array}{l}{x=\frac{y}{k}-2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨$\frac{1}{{k}^{2}}+3$£©y2-$\frac{4}{k}y$-2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÔòÔòy1+y2=$\frac{4k}{3{k}^{2}+1}$£¬y1•y2=$\frac{-2{k}^{2}}{3{k}^{3}+1}$£®
ҪʹMFΪ¡ÏPMQµÄÒ»Ìõ½Çƽ·ÖÏߣ¬±ØÂú×ãkPM+kQM=0£®
¼´$\frac{{y}_{1}}{{x}_{1}-m}+\frac{{y}_{2}}{{x}_{2}-m}=0$£¬¡ß${x}_{1}=\frac{{y}_{1}}{k}-2£¬{x}_{2}=\frac{{y}_{2}}{k}-2$£¬
´úÈëÉÏʽ¿ÉµÃ$\frac{2}{k}$y1y2-2£¨y1+y2£©-m£¨y1+y2£©=0
$\frac{2}{k}¡Á\frac{-2{k}^{2}}{1+3{k}^{2}}-£¨m+2£©\frac{4k}{1+3{k}^{2}}=0$£¬½âµÃm=-3£¬¡àµãM£¨-3£¬0£©£®
xÖáÉÏ´æÔÚÒ»µãM£¨-3£¬0£©£¬Ê¹µÃMFǡΪ¡ÏPMQµÄ½Çƽ·ÖÏߣ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ×ø±êµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢½Çƽ·ÖÏßÐÔÖÊ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø