题目内容
设符号
f(i)=f(1)+f(2)+f(3)+…+f(n),令函数I(n)=
sin(i×
+
),L(n)=
cos(i×
+
),则I(2013)+L(2014)= .
| n |
| i=1 |
| n |
| i=1 |
| π |
| 2 |
| π |
| 4 |
| n |
| i=1 |
| 2π |
| 3 |
| π |
| 6 |
考点:函数的值
专题:计算题
分析:易知y=sin(i×
+
)的周期T=4,y=cos(i×
+
)的周期T=3,由周期性可得答案.
| π |
| 2 |
| π |
| 4 |
| 2π |
| 3 |
| π |
| 6 |
解答:
解:y=sin(i×
+
)的周期T=4,
∵sin(1×
+
)+sin(2×
+
)+sin(3×
+
)+sin(4×
+
)=
-
-
+
=0,且2013=4×503+1,
∴I(2013)=sin(1×
+
)+sin(2×
+
)+sin(3×
+
)+sin(4×
+
)+…+sin(2013×
+
)
=503×0+sin(2013×
+
)=
,
y=cos(i×
+
)的周期T=3,
∵cos(1×
+
)+cos(2×
+
)+cos(3×
+
)=-
+0+
=0,且2014=3×671+1,
∴L(2014)=cos(1×
+
)+cos(2×
+
)+cos(3×
+
)+…+cos(2014×
+
)
=671×0+cos(2014×
+
)=-
,
∴I(2013)+L(2014)=
,
故答案为:
.
| π |
| 2 |
| π |
| 4 |
∵sin(1×
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
∴I(2013)=sin(1×
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
=503×0+sin(2013×
| π |
| 2 |
| π |
| 4 |
| ||
| 2 |
y=cos(i×
| 2π |
| 3 |
| π |
| 6 |
∵cos(1×
| 2π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| ||
| 2 |
| ||
| 2 |
∴L(2014)=cos(1×
| 2π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
=671×0+cos(2014×
| 2π |
| 3 |
| π |
| 6 |
| ||
| 2 |
∴I(2013)+L(2014)=
| ||||
| 2 |
故答案为:
| ||||
| 2 |
点评:本题考查函数值的求解、三角函数的周期性,考查学生的运算求解能力,属基础题.
练习册系列答案
相关题目