题目内容

设符号
n
i=1
f(i)=f(1)+f(2)+f(3)+…+f(n),令函数I(n)=
n
i=1
sin(i×
π
2
+
π
4
),L(n)=
n
i=1
cos(i×
3
+
π
6
),则I(2013)+L(2014)=
 
考点:函数的值
专题:计算题
分析:易知y=sin(i×
π
2
+
π
4
)的周期T=4,y=cos(i×
3
+
π
6
)的周期T=3,由周期性可得答案.
解答: 解:y=sin(i×
π
2
+
π
4
)的周期T=4,
∵sin(1×
π
2
+
π
4
)+sin(2×
π
2
+
π
4
)+sin(3×
π
2
+
π
4
)+sin(4×
π
2
+
π
4
)=
2
2
-
2
2
-
2
2
+
2
2
=0,且2013=4×503+1,
∴I(2013)=sin(1×
π
2
+
π
4
)+sin(2×
π
2
+
π
4
)+sin(3×
π
2
+
π
4
)+sin(4×
π
2
+
π
4
)+…+sin(2013×
π
2
+
π
4

=503×0+sin(2013×
π
2
+
π
4
)=
2
2

y=cos(i×
3
+
π
6
)的周期T=3,
∵cos(1×
3
+
π
6
)+cos(2×
3
+
π
6
)+cos(3×
3
+
π
6
)=-
3
2
+0+
3
2
=0,且2014=3×671+1,
∴L(2014)=cos(1×
3
+
π
6
)+cos(2×
3
+
π
6
)+cos(3×
3
+
π
6
)+…+cos(2014×
3
+
π
6

=671×0+cos(2014×
3
+
π
6
)=-
3
2

∴I(2013)+L(2014)=
2
-
3
2

故答案为:
2
-
3
2
点评:本题考查函数值的求解、三角函数的周期性,考查学生的运算求解能力,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网