题目内容
4.学校器材室有10个篮球,其中6个好球,4个球轻微漏气,甲、乙二人依次不放回各拿取一个球,则甲、乙二人至少有一个拿到好球的概率是 ( )| A. | $\frac{3}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{13}{15}$ | D. | $\frac{4}{5}$ |
分析 先求出它的对立事件的概率,再用1减去此概率,即为所求.
解答 解:所有的拿法共有10×9=90种,其中,甲、乙二人都不能拿到好球的方法有4×3=12种,
故甲、乙二人都不能拿到好球的概率为$\frac{12}{90}$=$\frac{2}{15}$,
故甲、乙二人至少有一个拿到好球的概率为1-$\frac{2}{15}$=$\frac{13}{15}$,
故选:C.
点评 本题主要考查古典概率及其计算公式的应用,事件和它的对立事件概率间的关系,属于基础题.
练习册系列答案
相关题目
13.函数$f(x)=\sqrt{3}sin({2x-\frac{π}{6}})+1$的最小值和最小正周期分别为( )
| A. | $-\sqrt{3}-1,π$ | B. | $-\sqrt{3}+1,π$ | C. | $-\sqrt{3},π$ | D. | $-\sqrt{3}-1,2π$ |
14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(Ⅰ)求未来3年中,设ξ表示流量超过120的年数,求ξ的分布列及期望;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
(Ⅰ)求未来3年中,设ξ表示流量超过120的年数,求ξ的分布列及期望;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
| 年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
| 发电机最多可运行台数 | 1 | 2 | 3 |