题目内容
19.已知数列{αn}满足${a_1}=1,{a_2}=2,{a_{n+2}}=({1+{{cos}^2}\frac{nπ}{2}}){a_n}+{sin^2}\frac{nπ}{2}$,则该数列的前21项的和为2112.分析 a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,可得a3=a1+1=2,a4=2a2=4,…,a2k-1=a2k-3+1,a2k=2a2k-2,(k∈N*,k≥2).因此数列{a2k-1}成等差数列,数列{a2k}成等比数列.利用等差数列与等比数列的前n项和公式即可得出.
解答 解:∵a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,
∴a3=a1+1=2,
a4=2a2=4,
…,
a2k-1=a2k-3+1,
a2k=2a2k-2,(k∈N*,k≥2).
∴数列{a2k-1}成等差数列,数列{a2k}成等比数列.
∴该数列的前21项和为=(a1+a3+…+a21)+(a2+a4+…+a20)
=(1+2+…+11)+(2+22+…+210)
=$\frac{11×(1+11)}{2}$+$\frac{2({2}^{10}-1)}{2-1}$=66+211-2=212.
故答案为:2112.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.在平面直角坐标系xoy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为$\frac{\sqrt{2}}{2}$,与过F1的直线交于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为( )
| A. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{6}$=1 |
14.已知复数z=$\frac{1+2i}{2}$(1+i)2(i为虚数单位),则z的共轭复数是( )
| A. | -2-i | B. | 2+3i | C. | $\frac{1}{2}$-i | D. | $\frac{1}{2}+i$ |
19.“a=2”是“ax+y-2=0与直线2x+(a-1)y+4=0平行”的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |