题目内容
6.在△ABC中,已知AB=3,BC=4,AC=$\sqrt{13}$.(1)求角B的大小;
(2)若D是BC的中点,求中线AD的长.
分析 (1)由余弦定理求出cosB以及B的值;
(2)利用中点的定义和余弦定理,即可求出中线AD的长.
解答 解:(1)△ABC中,AB=3,BC=4,AC=$\sqrt{13}$,
由余弦定理得,
cosB=$\frac{{AB}^{2}{+BC}^{2}{-AC}^{2}}{2×AB×BC}$=$\frac{{3}^{2}{+4}^{2}{-(\sqrt{13})}^{2}}{2×3×4}$=$\frac{1}{2}$,
又B∈(0,π),
∴B=$\frac{π}{3}$;
(2)如图所示,![]()
D是BC的中点,
∴BD=$\frac{1}{2}$BC=2,
∴AD2=AB2+BD2-2AB•BD•cosB
=32+22-2×3×2×cos$\frac{π}{3}$
=7,
∴AD=$\sqrt{7}$,
即中线AD的长为$\sqrt{7}$.
点评 本题考查了余弦定理的应用问题,是基础题目.
练习册系列答案
相关题目
16.已知函数f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,将函数f(x)图象向左平移$\frac{π}{3}$个单位长度后所得的函数过点$({-\frac{π}{6},1})$,则函数f(x)=sin(ωx+ϕ)( )
| A. | 在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递减 | B. | 在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递增 | ||
| C. | 在区间$[{-\frac{π}{3},\frac{π}{6}}]$上单调递减 | D. | 在区间$[{-\frac{π}{3},\frac{π}{6}}]$上单调递增 |
17.已知F1,F2为双曲线C:x2-2y2=1的左右焦点,点P在双曲线C上,∠F1PF2=120°,则${S_{△P{F_1}{F_2}}}$=( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
14.已知x、y的取值如表所示:
若y与x线性相关,且y=2x+a,则a=0.5.
| x | 0 | 1 | 3 | 4 |
| y | 2.2 | 4.3 | 4.8 | 6.7 |
1.在△ABC中,三个内角A,B,C的对边分别是a,b,c.若a=3,sinA=$\frac{1}{2}$,sin(A+C)=$\frac{3}{4}$,则b等于( )
| A. | 4 | B. | $\frac{8}{3}$ | C. | 6 | D. | $\frac{9}{2}$ |
15.已知A,B,C三点不共线,点O为平面ABC外的一点,则下列条件中,能得到P∈平面ABC的是( )
| A. | $\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ | B. | $\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$ | ||
| C. | $\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$ |