题目内容
19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“我获奖了”,丁说:“是乙获奖”.若四位歌手的话只有一句是错的,则获奖的歌手是( )| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
分析 根据乙与丙的说法相矛盾,得出乙与丙的说法一对一错;再根据甲、丁的说法都正确,推出获奖的歌手是乙.
解答 解:乙与丙的说法相矛盾,所以乙与丙的说法一对一错;
又甲说:“是乙或丙获奖”,正确;
丁说:“是乙获奖”,正确;
由此知获奖的歌手是乙,且乙说的也对.
故选:B.
点评 本题考查了简单的合情推理的应用问题,是基础题.
练习册系列答案
相关题目
7.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:
其中K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.则下列结论正确的是( )
| 男 | 女 | 总计 | |
| 爱好 | 10 | 40 | 50 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 30 | 70 | 100 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 |
| k | 2.706 | 3.841 | 5.024 |
| A. | 在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关” | |
| B. | 在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关” | |
| C. | 在犯错误的概率不超过0.025前提下,认为“是否爱吃零食与性别有关” | |
| D. | 在犯错误的概率不超过0.025前提下,认为“是否爱吃零食与性别无关” |
14.在平面直角坐标系中,已知向量$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),定点A的坐标为(1,2),点M满足$\overrightarrow{OM}$-2$\overrightarrow{OA}$=2$\overrightarrow{m}$+$\overrightarrow{n}$,曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π},区域U={P|r≤|$\overrightarrow{MP}$|≤R,0<r<R},曲线C与区域U的交集为两段分离的曲线,则( )
| A. | 3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1 | B. | 2$\sqrt{3}$-1<r<2$\sqrt{3}$+1≤R | C. | r≤2$\sqrt{3}$-1<R<2$\sqrt{3}$+1 | D. | r<2$\sqrt{3}$-1<R<2$\sqrt{3}$+1 |
4.已知长方体的长、宽、高分别为3,2,$\sqrt{3}$,则该长方体外接球的体积为( )
| A. | 8π | B. | 16π | C. | $\frac{16}{3}$π | D. | $\frac{32}{3}$π |
9.
如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n个面是矩形,体积为V,则( )
| A. | n=4,V=10 | B. | n=5,V=12 | C. | n=4,V=12 | D. | n=5,V=10 |