题目内容

已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….设f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y)
f(x+y)
的值.
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:由f(x)•f(y)=4,g(x)•g(y)=8,可得(ex-e-x)(ey-e-y)=4,(ex+e-x)(ey+e-y)=8,
解得ex+y+e-x-y=6,设ex+y=t>0,则t+
1
t
=6,可得t2-6t+1=0,解得t.于是
g(x+y)
f(x+y)
=
ex+y+e-x-y
ex+y-e-x-y
=
t2+1
t2-1
解答: 解:∵f(x)•f(y)=4,g(x)•g(y)=8,
∴(ex-e-x)(ey-e-y)=4,
(ex+e-x)(ey+e-y)=8,
化为ex+y-ex-y-e-x+y+e-x-y=4,
ex+y+e-x+y+ex-y+e-x-y=8,
解得ex+y+e-x-y=6,
设ex+y=t>0,则t+
1
t
=6,∴t2-6t+1=0,
解得t=3±2
2

g(x+y)
f(x+y)
=
ex+y+e-x-y
ex+y-e-x-y
=
t2+1
t2-1
=
6t
6t-2
=
3t
3t-1
3
2
4
点评:本题考查了指数幂的运算法则,考查了整体思想解决问题的方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网