题目内容
已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….设f(x)•f(y)=4,g(x)•g(y)=8,求
的值.
| g(x+y) |
| f(x+y) |
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:由f(x)•f(y)=4,g(x)•g(y)=8,可得(ex-e-x)(ey-e-y)=4,(ex+e-x)(ey+e-y)=8,
解得ex+y+e-x-y=6,设ex+y=t>0,则t+
=6,可得t2-6t+1=0,解得t.于是
=
=
.
解得ex+y+e-x-y=6,设ex+y=t>0,则t+
| 1 |
| t |
| g(x+y) |
| f(x+y) |
| ex+y+e-x-y |
| ex+y-e-x-y |
| t2+1 |
| t2-1 |
解答:
解:∵f(x)•f(y)=4,g(x)•g(y)=8,
∴(ex-e-x)(ey-e-y)=4,
(ex+e-x)(ey+e-y)=8,
化为ex+y-ex-y-e-x+y+e-x-y=4,
ex+y+e-x+y+ex-y+e-x-y=8,
解得ex+y+e-x-y=6,
设ex+y=t>0,则t+
=6,∴t2-6t+1=0,
解得t=3±2
.
∴
=
=
=
=
=±
.
∴(ex-e-x)(ey-e-y)=4,
(ex+e-x)(ey+e-y)=8,
化为ex+y-ex-y-e-x+y+e-x-y=4,
ex+y+e-x+y+ex-y+e-x-y=8,
解得ex+y+e-x-y=6,
设ex+y=t>0,则t+
| 1 |
| t |
解得t=3±2
| 2 |
∴
| g(x+y) |
| f(x+y) |
| ex+y+e-x-y |
| ex+y-e-x-y |
| t2+1 |
| t2-1 |
| 6t |
| 6t-2 |
| 3t |
| 3t-1 |
3
| ||
| 4 |
点评:本题考查了指数幂的运算法则,考查了整体思想解决问题的方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
函数y=3 x2-3x+2,x∈[-1,2]的值域是( )
| A、R | |||||
B、[
| |||||
| C、[9,243] | |||||
| D、[3,+∞) |