题目内容

4.直线x+(l-m)y+3=0(m为实数)恒过定点(  )
A.(3,0)B.(0,-3)C.(-3,0)D.(-3,1)

分析 令$\left\{\begin{array}{l}{x+3=0}\\{(1-m)y=0}\end{array}\right.$,可得直线恒过定点的坐标.

解答 解:方程化为:(x+3)+(1-m)y=0,
令$\left\{\begin{array}{l}{x+3=0}\\{(1-m)y=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$,
故直线恒过定点(-3,0),
故选:C.

点评 本题考查了直线系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网