ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¶ÌÖáÉϵÄÒ»¸ö¶¥µãÓëÁ½½¹µã¹¹³ÉÕýÈý½ÇÐΣ¬¹ýÍÖÔ²CµÄ½¹µã×÷xÖáµÄ´¹Ïß½ØÍÖÔ²µÄÏÒ³¤Îª3£¬ÉèA£¬B·Ö±ðΪÍÖÔ²µÄ×óÓÒ¶¥µã£¬MΪÍÖÔ²ÉÏÒìÓÚA£¬BµÄÈÎÒ»µã£®£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßMAÓëÖ±Ïßx=4ÏཻÓÚµãP£¬¹ýµãP×÷Ö±ÏßMBµÄ´¹Ö±£¬´¹×ãΪH£¬ÇóµãHµÄ¹ì¼£·½³Ì£®
·ÖÎö £¨1£©ÓÉÒÑÖªÖжÌÖáÉϵÄÒ»¸ö¶¥µãÓëÁ½½¹µã¹¹³ÉÕýÈý½ÇÐΣ¬¹ýÍÖÔ²CµÄ½¹µã×÷xÖáµÄ´¹Ïß½ØÍÖÔ²µÄÏÒ³¤Îª3£¬¿ÉµÃa2£¬b2£¬½ø¶øµÃµ½ÍÖÔ²µÄ·½³Ì£»
£¨2£©ÑÓ³¤PH£¬½»xÖáÓÚµãQ£¬½ø¶øµÃµ½µãHÔÚÒÔBQΪֱ¾¶µÄÔ²ÉÏ£¬£¨²»°üÀ¨BQÁ½µã£©£¬¿ÉµÃµãHµÄ¹ì¼£·½³Ì£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¶ÌÖáÉϵÄÒ»¸ö¶¥µãÓëÁ½½¹µã¹¹³ÉÕýÈý½ÇÐΣ¬
¡àa=2c£¬¡¢Ù
ÓÖ¡ß¹ýÍÖÔ²CµÄ½¹µã×÷xÖáµÄ´¹Ïß½ØÍÖÔ²µÄÏÒ³¤Îª3£¬
¡à$\frac{2{b}^{2}}{a}$=3¡¢Ú
½áºÏa2=b2+c2µÃ£º$\left\{\begin{array}{l}a=2\\ b=\sqrt{3}\\ c=1\end{array}\right.$£¬
¹ÊÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
£¨2£©ÑÓ³¤PH£¬½»xÖáÓÚµãQ£¬![]()
ÉèM£¨x0£¬y0£©£¬ÔòAMµÄ·½³ÌΪ£ºy=$\frac{{y}_{0}}{{x}_{0}+2}£¨x+2£©$£¬
µ±x=4ʱ£¬y=$\frac{6{y}_{0}}{{x}_{0}+2}$£¬¼´Pµã×ø±êΪ£º£¨4£¬$\frac{6{y}_{0}}{{x}_{0}+2}$£©£¬
ÉèQµã×ø±êΪ£¨m£¬0£©£¬ÔòkPQ=$\frac{\frac{6{y}_{0}}{{x}_{0}+2}}{4-m}$=$\frac{6{y}_{0}}{{£¨x}_{0}+2£©£¨4-m£©}$£¬
¡ßMB¡ÍPQ£¬
¡àkPQ•kMB=-1£¬
¡à$\frac{6{y}_{0}}{{£¨x}_{0}+2£©£¨4-m£©}$•$\frac{{y}_{0}}{{x}_{0}+2}$=-1£¬
¼´$\frac{6{{y}_{0}}^{2}}{{{£¨x}_{0}}^{2}-4£©£¨4-m£©}$=-1£¬
¡ß$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{3}=1$£¬¹Ê${{y}_{0}}^{2}=3-\frac{{{3x}_{0}}^{2}}{4}$£¬
¼´$\frac{6£¨3-\frac{{{3x}_{0}}^{2}}{4}£©}{{{£¨x}_{0}}^{2}-4£©£¨4-m£©}$=-1£¬
½âµÃ£ºm=-$\frac{1}{2}$£¬
¡àQµã×ø±êΪ£¨-$\frac{1}{2}$£¬0£©£¬
¡ßHQ¡ÍHB£¬
¡àµãHÔÚÒÔBQΪֱ¾¶µÄÔ²ÉÏ£¬£¨²»°üÀ¨BQÁ½µã£©£¬
ÓÉBµã×ø±êΪ£¨2£¬0£©£¬µÃBQµÄÖеã×ø±êΪ£¨$\frac{3}{4}$£¬0£©£¬|BQ|=$\frac{5}{2}$£¬
¡àHµÄ¹ì¼£·½³ÌΪ£º$£¨x-\frac{3}{4}£©^{2}+{y}^{2}=\frac{25}{16}£¨y¡Ù0£©$
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄ±ê×¼·½³ÌÖ±ÏßÓëÍÖÔ²µÄλÖÃ×ÛºÏÓ¦Óã¬ÄѶÈÖеµ£®
| ³É¼¨ ÐÔ±ð | ºÏ¸ñ | ²»ºÏ¸ñ | ºÏ¼Æ |
| ÄÐÐÔ | 45 | 10 | |
| Å®ÐÔ | 30 | ||
| ºÏ¼Æ | 105 |
£¨2£©¸ù¾ÝÁÐÁª±íÅжÏÐÔ±ðÓ뿼ÊԳɼ¨ÊÇ·ñÓйØÏµ£¬Èç¹ûÓйØÏµÇó³ö¾«È·µØ¿ÉÐŶȣ¬Ã»¹ØÏµÇë˵Ã÷ÀíÓÉ£®