题目内容
【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗
、
、
.经过引种实验发现,引种树苗
的自然成活率为
,引种树苗
、
的自然成活率均为
.
(1)任取树苗
、
、
各一棵,估计自然成活的棵数为
,求
的分布列及其数学期望;
(2)将(1)中的数学期望取得最大值时
的值作为
种树苗自然成活的概率.该农户决定引种
棵
种树苗,引种后没有自然成活的树苗有
的树苗可经过人工栽培技术处理,处理后成活的概率为
,其余的树苗不能成活.
①求一棵
种树苗最终成活的概率;
②若每棵树苗引种最终成活可获利
元,不成活的每棵亏损
元,该农户为了获利期望不低于
万元,问至少要引种
种树苗多少棵?
【答案】(1)分布列见解析,
;(2)①
;②
棵.
【解析】
(1)根据题意得出随机变量
的可能取值有
、
、
、
,计算出随机变量
在不同取值下的概率,可得出随机变量
的分布列,进而可求得随机变量
的数学期望;
(2)①由(1)知当
时,
最大,然后分一棵
种树苗自然成活和非自然成活两种情况,可求得所求事件的概率;
②记
为
棵树苗的成活棵数,由题意可知
,利用二项分布的期望公式得出
,根据题意得出关于
的不等式,解出
的取值范围即可得解.
(1)依题意,
的所有可能值为
、
、
、
,
则
,
,
,
.
所以,随机变量
的分布列为:
|
|
|
|
|
|
|
|
|
|
;
(2)由(1)知当
时,
取得最大值.
①一棵
种树苗最终成活的概率为:
,
②记
为
棵树苗的成活棵数,则
,
,
,
.
所以该农户至少要种植
棵树苗,才可获利不低于
万元.
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.
市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了
人,并将这
人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过
元):
消费金额(单位:百元) |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
由频数分布表可以认为,该市大学生网络外卖消费金额
(单位:元)近似地服从正态分布
,其中
近似为样本平均数
(每组数据取区间的中点值,
).现从该市任取
名大学生,记其中网络外卖消费金额恰在
元至
元之间的人数为
,求
的数学期望;
![]()
市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值
元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第
格、第
格、第
格、…、第
格共
个方格.棋子开始在第
格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是
,其中
),若掷出正面,将棋子向前移动一格(从
到
),若掷出反面,则将棋子向前移动两格(从
到
).重复多次,若这枚棋子最终停在第
格,则认为“闯关成功”,并赠送
元充值饭卡;若这枚棋子最终停在第
格,则认为“闯关失败”,不再获得其他奖励,活动结束.
①设棋子移到第
格的概率为
,求证:当
时,
是等比数列;
②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.
参考数据:若随机变量
服从正态分布
,则
,
,
.