题目内容
7.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则 f(2016)=$\frac{1}{2}$.分析 根据已知中函数的解析式,分析出f(x)是周期为6的周期函数,进而可得答案.
解答 解:∵当x>0时,f(x)=f(x-1)-f(x-2),
f(x-1)=f(x-2)-f(x-3),
得出f(x)=-f(x-3),可得f(x+6)=f(x),所以周期是6.
所以f(2016)=f(336×6)=f(0),
=2 0-1=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查分段函数的应用,求函数值,要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值.分段函数分段处理,这是研究分段函数图象和性质最核心的理念
练习册系列答案
相关题目
17.不等式组$\left\{\begin{array}{l}y≥0\\ x+3y≤4\\ 3x+y≥4\end{array}\right.$,所表示的平面区域的面积等于( )
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
18.己知α是第三象限角,且tanα=$\frac{5}{12}$,则cosα的值是( )
| A. | -$\frac{5}{13}$ | B. | $\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
2.下列条件使M与A,B,C一定共面的是( )
| A. | $\overrightarrow{OM}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$ | B. | $\overrightarrow{OM}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$ | ||
| C. | $\overrightarrow{OM}$=$\frac{1}{5}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$ | D. | $\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$ |
12.
如图所示,已知A,B,C三点不共线,P为一定点,O为平面ABC外任意一点,则下列能表示向量$\overrightarrow{OP}$的为( )
| A. | $\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$ | B. | $\overrightarrow{OA}$-3$\overrightarrow{AB}$-2$\overrightarrow{AC}$ | C. | $\overrightarrow{OA}$+3$\overrightarrow{AB}$-2$\overrightarrow{AC}$ | D. | $\overrightarrow{OA}$+2$\overrightarrow{AB}$-3$\overrightarrow{AC}$ |