题目内容
15.已知函数f(x)=ax3+bx2+cx+3-a(a,b,c∈R,且a≠0),当x=-1时,f(x)取到极大值2.(1)用关于a的代数式分别表示b和c;
(2)当a=1时,求f(x)的极小值;
(3)求a的取值范围.
分析 (1)根据极值的条件得出由$\left\{\begin{array}{l}{f(-1)=2}\\{{f}^{′}(-1)=0}\end{array}\right.$求解即可.
(2)求解$f'(x)=3{x^2}+4x+1=3(x+1)(x+\frac{1}{3})$,令f'(x)=0得:x=-1或$x=-\frac{1}{3}$,列表判断极值.
(3)根据f(-1)=2为极大值,必须$\left\{\begin{array}{l}{a>0}\\{\frac{a-2}{3a}>-1}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{\frac{a-2}{3a}<-1}\end{array}\right.$,求解不等式即可.
解答 解:(1)f'(x)=3ax2+2bx+c,由$\left\{\begin{array}{l}{f(-1)=2}\\{{f}^{′}(-1)=0}\end{array}\right.$解得:b=a+1,c=2-a,
(2)当a=1时,b=2,c=1
∴f(x)=x3+2x2+x+2
$f'(x)=3{x^2}+4x+1=3(x+1)(x+\frac{1}{3})$
令f'(x)=0得:x=-1或$x=-\frac{1}{3}$,列表如下:
| x | (-∞,-1) | -1 | ($-1,-\frac{1}{3}$) | $-\frac{1}{3}$ | ($-\frac{1}{3},+∞$) |
| f'(x) | + | 0 | - | 0 | + |
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
(3)f'(x)=3ax2+2(a+1)x+2-a令f'(x)=0,则$3a•(x+1)•(x-\frac{a-2}{3a})=0$
∴x=-1或$x=\frac{a-2}{3a}$
要使f(-1)=2为极大值,必须$\left\{\begin{array}{l}{a>0}\\{\frac{a-2}{3a}>-1}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{\frac{a-2}{3a}<-1}\end{array}\right.$
∴a>$\frac{1}{2}$.
点评 本题综合考查了导数在解决极值问题中的运用,结合不等式,列表求解判断,属于考查综合能力的题目.
练习册系列答案
相关题目
14.设全集U=R,集合A={y|y=x2-2},B={x|x≥3},则A∩(∁UB)=( )
| A. | ∅ | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|-2≤x<3} |
15.已知△ABC中,sinA+2sinBcosC=0,则tanA的最大值是( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
10.数列{an}中,${a_n}+{a_{n+2}}=2{a_{n+1}}({n∈{N^*}}),{a_5}=5$,则有( )
| A. | a4•a6=25 | B. | a4•a6≤25 | C. | a4•a6>25 | D. | a4•a6<25 |