题目内容
已知△ABC中,∠A=90°,D,E两点三等分斜边,若|AD|=sinx.|AE|=cosx.求|BC|.
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的三角形法则,得
=
-
,通过三等分点,用向量AB,AC表示向量AD,AE,再由向量的平方即为模的平方,求出向量AD,AE的数量积,列出BC的方程,解得即可.
| DE |
| AE |
| AD |
解答:
解:
=
-
,
=
+
=
+
=
+
-
=
+
,
=
+
=
+
=
+
-
=
+
,
则
•
=
2+
2+
•
=
2+
×0=
|
|2,
则|
|2=
2+
2-2
•
=cos2x+sin2x-2×
|
|2
=1-
|
|2=
|
|2,
即有|
|=
.
| DE |
| AE |
| AD |
| AD |
| AC |
| CD |
| AC |
| 1 |
| 3 |
| CB |
| AC |
| 1 |
| 3 |
| AB |
| 1 |
| 3 |
| AC |
=
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
| AE |
| AB |
| BE |
| AB |
| 1 |
| 3 |
| BC |
| AB |
| 1 |
| 3 |
| AC |
| 1 |
| 3 |
| AB |
=
| 1 |
| 3 |
| AC |
| 2 |
| 3 |
| AB |
则
| AD |
| AE |
| 2 |
| 9 |
| AB |
| 2 |
| 9 |
| AC |
| 5 |
| 9 |
| AB |
| AC |
=
| 2 |
| 9 |
| BC |
| 5 |
| 9 |
| 2 |
| 9 |
| BC |
则|
| DE |
| AE |
| AD |
| AD |
| AE |
=cos2x+sin2x-2×
| 2 |
| 9 |
| BC |
=1-
| 4 |
| 9 |
| BC |
| 1 |
| 9 |
| BC |
即有|
| BC |
3
| ||
| 5 |
点评:本题考查平面向量的数量积的运算和性质,考查向量的平方即为模的平方,向量的加减运算,属于基础题.
练习册系列答案
相关题目
设函数f(x)=
,g(x)=x2f(x-1),则函数g(x)的递减区间是( )
|
| A、(0,1] |
| B、(0,1) |
| C、(-∞,0) |
| D、(0,+∞) |
已知函数f(x)是偶函数,且x≥0时,f(x)=sin2x,则f(-
)=( )
| 13π |
| 6 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|