题目内容
12.复数$z=\frac{1+i}{1-i}+(1-i)$的虚部等于0.分析 利用复数的运算法则即可得出.
解答 解:$z=\frac{1+i}{1-i}+(1-i)$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$+1-i=$\frac{2i}{2}$+1-i=1的虚部=0.
故答案为:0.
点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
2.某几何体的三视图如图所示,则它的体积是( )

| A. | $8-\frac{2π}{3}$ | B. | $64-\frac{16π}{3}$ | C. | $8-\frac{π}{3}$ | D. | $64-\frac{12π}{3}$ |
3.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如表1:
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2010,z=y-5得到下表2:
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\hat y=\hat bx+\hat a$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| z | 0 | 1 | 2 | 3 | 5 |
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\hat y=\hat bx+\hat a$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是( )
| A. | [6kπ,6kπ+3](k∈Z) | B. | [6kπ-3,6kπ](k∈Z) | C. | [6k,6k+3](k∈Z) | D. | [6k-3,6k](k∈Z) |
4.在[-3,3]上随机地取一个数b,则事件“直线y=x+b与圆x2+y2-2y-1=0有公共点”发生的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{4}$ |
1.已知集合A={-2,0,2},B={x|x2+x-2=0},则A∩B=( )
| A. | ∅ | B. | {2} | C. | {0} | D. | {-2} |