题目内容
1.若函数f(x)=$\frac{x}{ax+b}$(a≠0),f(2)=1,又方程f(x)=x有唯一解,则a+b=$\frac{3}{2}$.分析 易知f(2)=$\frac{2}{2a+b}$=1,化简f(x)-x=$\frac{x(1-ax-b)}{ax+b}$,从而可得$\left\{\begin{array}{l}{2a+b=2}\\{1-b=0}\end{array}\right.$,从而解得.
解答 解:由题意得,
f(2)=$\frac{2}{2a+b}$=1,
f(x)-x=$\frac{x}{ax+b}$-x=$\frac{x(1-ax-b)}{ax+b}$=0,
故$\left\{\begin{array}{l}{2a+b=2}\\{1-b=0}\end{array}\right.$,
解得,a=$\frac{1}{2}$,b=1;
故a+b=$\frac{3}{2}$;
故答案为:$\frac{3}{2}$.
点评 本题考查了函数的化简与运算,属于中档题.
练习册系列答案
相关题目
11.已知某几何体的三视图如图所示,则该几何体的表面积( )
| A. | 6 | B. | $6+2\sqrt{3}$ | C. | $8+8\sqrt{2}$ | D. | $4+4\sqrt{2}$ |
9.
每年七夕,琳琅满目的饰品在各大品牌店中成为年轻人亲眯的对象,这也使各大珠宝公司挖空心思,设计出匠心独运的饰品.某珠宝公司市场专员甲对该公司的一款项链的单价x(百元)和单位时间内的销售量y(件)之间的关系作出价格分析,所得数据如下:
其中价格x(元)恰为公差为2的等差数列{an}的前5项,且等差数列{an}的前10项和为230.
(1)请根据上述数据在下列网格纸中绘制散点图;
(2)请根据表格数据计算项链的单价x(百元)和单位时间内的销售量y(件)之间的回归直线方程.
$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.
| 单价x(百元) | a1 | a2 | a3 | a4 | a5 |
| 单位时间内销售量y(件) | 14 | 13 | 10 | 7 | 5 |
(1)请根据上述数据在下列网格纸中绘制散点图;
(2)请根据表格数据计算项链的单价x(百元)和单位时间内的销售量y(件)之间的回归直线方程.
$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.
16.已知函数f(x)=(sinx-cosx)sinx,x∈R,则f(x)的最小正周期是( )
| A. | π | B. | 2π | C. | $\frac{π}{2}$ | D. | 2 |
13.Sn表示数列{an}(n≥1)的前n项和,已知a1=1,且?n≥1,Sn+1=4an+2,则a2013等于( )
| A. | 3019•22012 | B. | 3019•22013 | C. | 3018•22012 | D. | 以上答案均不对 |