题目内容
已知数列{an}的首项a1=5,前n项和为Sn.若Sn+1=2Sn+n+5(n∈N*),则数列{an+1}是等比数列.
(1)写出该命题的逆命题;
(2)证明原命题是真命题.
(1)写出该命题的逆命题;
(2)证明原命题是真命题.
考点:四种命题
专题:等差数列与等比数列,简易逻辑
分析:(1)根据原命题与逆命题之间的关系,写出它的逆命题即可;
(2)根据等比数列的定义,结合前n项和公式,即可证明数列{an+1}是等比数列.
(2)根据等比数列的定义,结合前n项和公式,即可证明数列{an+1}是等比数列.
解答:
解:(1)∵原命题是数列{an}的首项a1=5,前n项和为Sn,若Sn+1=2Sn+n+5(n∈N*),则数列{an+1}是等比数列;
∴它的逆命题是数列{an}的首项a1=5,前n项和为Sn,若数列{an+1}是等比数列,则Sn+1=2Sn+n+5(n∈N*);
(2)证明:在数列{an}中,a1=5,前n项和为Sn,
且Sn+1=2Sn+n+5(n∈N*),
∴Sn=2Sn-1+(n-1)+5,
∴(Sn+1-Sn)=2(Sn-Sn-1)+[n-(n-1)]+(5-5);
即an+1=2an+1,
∴an+1+1=2an+2,
∴
=2;
∴数列{an+1}是以公比q=2,首项为a1+1=5+1=6的等比数列.
∴原命题是真命题.
∴它的逆命题是数列{an}的首项a1=5,前n项和为Sn,若数列{an+1}是等比数列,则Sn+1=2Sn+n+5(n∈N*);
(2)证明:在数列{an}中,a1=5,前n项和为Sn,
且Sn+1=2Sn+n+5(n∈N*),
∴Sn=2Sn-1+(n-1)+5,
∴(Sn+1-Sn)=2(Sn-Sn-1)+[n-(n-1)]+(5-5);
即an+1=2an+1,
∴an+1+1=2an+2,
∴
| an+1+1 |
| an+1 |
∴数列{an+1}是以公比q=2,首项为a1+1=5+1=6的等比数列.
∴原命题是真命题.
点评:本题考查了四种命题之间的关系,也考查了等比数列的定义与前n项和公式的应用问题,是基础题.
练习册系列答案
相关题目
函数f(x)=
的值域是( )
| 1 |
| 1+x2 |
| A、(0,1) |
| B、(0,1] |
| C、[0,1) |
| D、[0,1] |
设α,β是锐角,且cosα=
,sin(α+β)=
,则β=( )
| 1 |
| 7 |
5
| ||
| 14 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合A={y|y=
,x>0},B={x|y=ln(2x-4)},若m∈A,m∉B,则实数m的取值范围是( )
| 1 |
| x |
| A、(-∞,0) |
| B、(2,+∞) |
| C、(0,2) |
| D、(0,2] |