题目内容
在直角坐标系和以原点为极点,以x轴正方向为极轴建立的极坐标系中,直线l:y+kx+2=0与曲线C:ρ=2cosθ相交,则k的取值范围是( )
| A、k∈R | ||
B、k≥-
| ||
C、k<-
| ||
| D、k∈R但k≠0 |
考点:简单曲线的极坐标方程
专题:选作题,坐标系和参数方程
分析:先将原极坐标方程ρ=2cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解.
解答:
解:将原极坐标方程ρ=2cosθ,化为:ρ2=2ρcosθ,化成直角坐标方程为:x2+y2-2x=0,
即(x-1)2+y2=1.
则圆心到直线的距离d=
<1,
解之得:k<-
.
故选:C.
即(x-1)2+y2=1.
则圆心到直线的距离d=
| |k+2| | ||
|
解之得:k<-
| 3 |
| 4 |
故选:C.
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关题目
设不等式组
表示的平面区域为r,且函数y=logax的图象经过区域r,则实数a的取值范围是( )
|
A、(1,
| |||||
B、[
| |||||
C、[
| |||||
D、[
|
正方体ABCD-A1B1C1D1中,M、N、Q分别为AB,BB1,C1D1的中点,过M、N、Q的平面与正方体相交截得的图形是( )
| A、三角形 | B、四边形 |
| C、五边形 | D、六边形 |
若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(
,1)内恒有f(x)>0,则f(x)的单调递增区间是( )
| 1 |
| 2 |
A、(-∞,-
| ||
B、(-
| ||
C、(-∞,-
| ||
| D、(0,+∞) |
下列函数中,最小正周期为π的偶函数是( )
| A、y=sin2x | ||
B、y=cos
| ||
| C、y=sin2x+cos2x | ||
D、y=
|