题目内容

5.函数$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的单调递减区间为(  )
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

分析 求出函数f(x)的导数,解关于导函数的不等式,求出函数的递减区间即可.

解答 解:f′(x)=$\frac{3}{2}$${(6-x{-x}^{2})}^{\frac{1}{2}}$(-2x-1),
由题意令f′(x)≤0,
由$\left\{\begin{array}{l}{6-x{-x}^{2}≥0}\\{-2x-1≤0}\end{array}\right.$,解得:-$\frac{1}{2}$≤x≤2,
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网