题目内容

11.已知等比数列{an}的公比q>1,且2(an+an+2)=5an+1,n∈N*
(Ⅰ)求q的值;
(Ⅱ)若a52=a10,求数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Sn

分析 (I)利用等比数列的通项公式即可得出;
(II)利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:(I)∵2(an+an+2)=5an+1,n∈N*,∴$2{a}_{n}(1+{q}^{2})$=5anq,
化为2(1+q2)=5q,又q>1,
解得q=2.
(II)a52=a10,$({a}_{1}×{2}^{4})^{2}$=a1×29,解得a1=2.
∴an=2n
∴$\frac{{a}_{n}}{{3}^{n}}$=$(\frac{2}{3})^{n}$.
∴数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Sn=$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$=$2[1-(\frac{2}{3})^{n}]$.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网