题目内容

7.平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使得我们可以用向量作为解析几何的研究工具,例如,设直线l的倾斜角α(α≠90°),在l上任取两个不同的点P1(x1,y2),P2(x2,y2),不妨设向量$\overrightarrow{{P_1}{P_2}}$的方向是向上的,那么向量$\overrightarrow{{P_1}{P_2}}$的坐标为(x2-x1,y2-y1),过原点作向量$\overrightarrow{OP}$=$\overrightarrow{{P_1}{P_2}}$,则点P的坐标是(x2-x1,y2-y1),而直线OP的倾斜角也是α(α≠90°),根据正切函数的定义得k=tanα=$\frac{{{y_2}-{y_1}}}{{x{\;}_2-{x_1}}}$;利用向量工具研究下列直线Ax+By+C=0,(ABC≠0)有关问题;
(1)、判断向量$\overrightarrow m$=(A,B)与直线Ax+By+C=0的关系,并说明理由;
(2)、直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交,求两直线夹角的余弦值;
(3)、用向量知识推导点P0(x0,y0)到直线Ax+By+C=0,(ABC≠0)的距离公式.

分析 (1)直线的方向向量为$\overrightarrow{m}$=(-B,A),$\overrightarrow{m}$=(A,B),可得向量$\overrightarrow m$=(A,B)是直线Ax+By+C=0的法向量;
(2)直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交D,在直线A1x+B1y+C1=0与直线A2x+B2y+C2=0上分别取P,Q,可得两直线夹角的余弦值=|$\frac{\overrightarrow{DP}•\overrightarrow{DQ}}{|\overrightarrow{DP}||\overrightarrow{DQ}|}$|;
(3)利用向量的数量积运算,求出$\overrightarrow{{P}_{0}R}$在直线的单位法向量上的投影的绝对值即可.

解答 解:(1)直线的方向向量为$\overrightarrow{m}$=(-B,A),$\overrightarrow{m}$=(A,B),
∴向量$\overrightarrow m$=(A,B)是直线Ax+By+C=0的法向量;
(2)直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交D,
在直线A1x+B1y+C1=0与直线A2x+B2y+C2=0上分别取P,Q,则两直线夹角的余弦值=|$\frac{\overrightarrow{DP}•\overrightarrow{DQ}}{|\overrightarrow{DP}||\overrightarrow{DQ}|}$|;
(3)设R是直线上任意一点,则R(x,y),直线的方向向量为$\overrightarrow{m}$=(-B,A),
则可取直线法向量为$\overrightarrow{m}$=(A,B),
$\overrightarrow{{P}_{0}R}$=(x-x0,y-y0
∴d=$\frac{|A(x-{x}_{0})+B(y-{y}_{0})|}{\sqrt{{A}^{2}+{B}^{2}}}$=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$.

点评 本题考查向量知识的运用,考查了点到直线的距离公式、两直线夹角的余弦值的证明方法、类比推理等基础知识与基本技能方法,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网