题目内容

10.如图所示,在三角形ABC中,AM:AB=1:3,AN:AC=1:4,BN与CM相交于P,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AP}$.

分析 根据条件可得$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{AC},\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$,从而由B,P,N三点共线便可得到$\overrightarrow{AP}=(1-λ)\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}$,而同理由C,P,M三点共线可得到$\overrightarrow{AP}=(1-μ)\overrightarrow{AC}+\frac{μ}{3}\overrightarrow{AB}$,这样根据平面向量基本定理便可得到$\left\{\begin{array}{l}{1-λ=\frac{μ}{3}}\\{\frac{λ}{4}=1-μ}\end{array}\right.$,可以解出λ,这样即可用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{AP}$.

解答 解:B,P,N三点共线;
∴$\overrightarrow{BP}=λ\overrightarrow{BN}$;
∴$\overrightarrow{AP}-\overrightarrow{AB}=λ(\overrightarrow{AN}-\overrightarrow{AB})$;
∴$\overrightarrow{AP}=(1-λ)\overrightarrow{AB}+λ\overrightarrow{AN}$=$(1-λ)\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}$;
同理由C,P,M三点共线可得$\overrightarrow{AP}=(1-μ)\overrightarrow{AC}+\frac{μ}{3}\overrightarrow{AB}$;
∴由平面向量基本定理得$\left\{\begin{array}{l}{1-λ=\frac{μ}{3}}\\{\frac{λ}{4}=1-μ}\end{array}\right.$;
解得$λ=\frac{8}{11}$;
∴$\overrightarrow{AP}=\frac{3}{11}\overrightarrow{a}+\frac{2}{11}\overrightarrow{b}$.

点评 考查共线向量基本定理,向量减法、数乘的几何意义,以及向量的数乘运算,平面向量基本定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网