题目内容

12.在数列{an}中,a1=$\frac{1}{2}$,{an}的前n项和Sn满足Sn+1-Sn=($\frac{1}{2}$)n+1(n∈N*).
(1)求数列{an}的通项公式an,以及前n项和Sn
(2)若S1+S2,S1+S3,m(S2+S3)成等差数列,求实数m的值.

分析 (1)由an+1=Sn+1-Sn=$(\frac{1}{2})^{n+1}$.可得n≥2时,an=$(\frac{1}{2})^{n}$,n=1时也成立.利用求和公式可得Sn
(2)由(1)可得:S1=$\frac{1}{2}$,S2=$\frac{3}{4}$,S3=$\frac{7}{8}$.根据S1+S2,S1+S3,m(S2+S3)成等差数列即可得出.

解答 解:(1)∵an+1=Sn+1-Sn=$(\frac{1}{2})^{n+1}$.
∴n≥2时,an=$(\frac{1}{2})^{n}$,又a1=$\frac{1}{2}$,因此n=1时也成立.
∴an=$(\frac{1}{2})^{n}$,
∴Sn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
(2)由(1)可得:S1=$\frac{1}{2}$,S2=$\frac{3}{4}$,S3=$\frac{7}{8}$.
∵S1+S2,S1+S3,m(S2+S3)成等差数列,∴$\frac{1}{2}+\frac{3}{4}$+m($\frac{3}{4}$+$\frac{7}{8}$)=2($\frac{1}{2}$+$\frac{7}{8}$).
解得m=$\frac{12}{13}$.

点评 本题考查了等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网