题目内容
4.已知数列{an}中,a1=1,an+1=2an+3,数列{bn}中,b1=1,且点(bn+1,bn)在直线y=x-1上.(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)求数列{bn}的前n项和Sn.
分析 (Ⅰ)由an+1=2an+3得an+1+3=2(an+3),由此能求出an.
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,所以bn=bn+1-1即bn+1-bn=1,由此能求出bn.
(Ⅲ)根据等差数列的前n项和公式进行解答.
解答 解:(Ⅰ)由an+1=2an+3得an+1+3=2(an+3)
所以{an+3}是首项为a1+3=4,公比为2的等比数列.
所以an+3=4×2n-1=2n+1,故an=2n+1-3;
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,
所以bn=bn+1-1即bn+1-bn=1又b1=1
故数列{bn}是首项为1,公差为1的等差数列,
所以bn=n;
(Ⅲ)由(Ⅱ)知,数列{bn}是首项为1,公差为1的等差数列,
所以Sn=1×n+$\frac{1}{2}$n(n-1)=$\frac{1}{2}$n(n+1).
点评 本题考查数列的通项公式的计算和等差数列的前n项和公式的应用,难度不大,考查计算能力.解题时要认真审题.
练习册系列答案
相关题目
12.命题“?x0∈∁RQ,x03∈Q”的否定是( )
| A. | ?x0∉∁RQ,x03∈Q | B. | ?x0∈∁RQ,x03∈Q | C. | ?x∉∁RQ,x3∈Q | D. | ?x∈∁RQ,x3∉Q |
19.已知数列{an}满足a1=1,a2=$\frac{2}{3}$ 且 $\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n-1}}$=$\frac{2}{{a}_{n}}$(n≥2),则a15等于( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{3}$ | D. | $\frac{8}{15}$ |