题目内容

17.若抛物线y2=8x上有一点P,它到焦点的距离为20,则P点的横坐标为18.

分析 由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|MF|=20,则M到准线的距离也为20,即可得|MF|=x+$\frac{p}{2}$=x+2=20,进而求出x.

解答 解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+$\frac{p}{2}$=x+2=20,
∴x=18,
故答案为:18.

点评 活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网