题目内容

若直线l过点P(1,0)与双曲线x2-
y2
4
=1只有一个公共点,则这样的直线有(  )
A、4条B、3条C、2条D、1条
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:因为点 (1,1)在双曲线x2-y2=3的渐近线上,所以结合双曲线的性质与图形可得过点(1,1)与双曲线公有一个公共点的直线有3条.
解答: 解:由题意可得:双曲线x2-
y2
4
=1的渐近线方程为:y=±2x,
点P(1,0)是双曲线的顶点,故直线x=1与双曲线只有一个公共点;
过点P(1,0)平行于渐近线y=±2x时,直线L与双曲线只有一个公共点,有2条
所以,过P(1,0)的直线L与双曲线只有一个公共点,共有3条
故选:B.
点评:本题以双曲线为载体,主要考查了直线与圆锥曲线的综合问题.突出考查了双曲线的几何性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网