题目内容

16.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n∈{N_+})$,用数学归纳法证明$f({2^n})>\frac{n+1}{2}$时,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

分析 首先由题目假设n=k时,代入得到f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,由已知化简即可得到结果.

解答 解:因为假设n=k时,f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,
当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,
∴f(2k+1)-f(2k)=$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$,
故答案为$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

点评 此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网