题目内容

11.已知数列{an}的前n项和Sn=an+$\frac{1}{2}{n^2}+\frac{3}{2}n-2(n∈{N^*})$.
(1)求数列{an}的通项公式;
(2)若bn=$\left\{\begin{array}{l}\frac{1}{{({a_n}-1)({a_n}+1)}},n为奇数\\ 4(\frac{1}{2}{)^{a_n}},n为偶数\end{array}$,且数列{bn}的前n项和为Tn,求T2n

分析 (1)由于数列{an}的前n项和Sn=an+$\frac{1}{2}{n^2}+\frac{3}{2}n-2(n∈{N^*})$,可得a1+a2=a2+$\frac{1}{2}×{2}^{2}+\frac{3}{2}×2$-2,解得a1.当n≥2时,Sn-1=an-1+$\frac{1}{2}(n-1)^{2}+\frac{3}{2}(n-1)$-2,可得:an=an-an-1+$\frac{1}{2}{n}^{2}+\frac{3}{2}$n-2-[$\frac{1}{2}(n-1)^{2}+\frac{3}{2}(n-1)$-2],化简整理即可得出.
(2)bn=$\left\{\begin{array}{l}\frac{1}{{({a_n}-1)({a_n}+1)}},n为奇数\\ 4(\frac{1}{2}{)^{a_n}},n为偶数\end{array}$,可得b2n-1=$\frac{1}{({a}_{2n-1}-1)({a}_{2n-1}+1)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.b2n=$(\frac{1}{4})^{n}$.即可得出.

解答 解:(1)∵数列{an}的前n项和Sn=an+$\frac{1}{2}{n^2}+\frac{3}{2}n-2(n∈{N^*})$,∴a1+a2=a2+$\frac{1}{2}×{2}^{2}+\frac{3}{2}×2$-2,解得a1=3.
当n≥2时,Sn-1=an-1+$\frac{1}{2}(n-1)^{2}+\frac{3}{2}(n-1)$-2,可得:an=an-an-1+$\frac{1}{2}{n}^{2}+\frac{3}{2}$n-2-[$\frac{1}{2}(n-1)^{2}+\frac{3}{2}(n-1)$-2],
解得an-1=n+1.
∴an=n+2,当n=1时也成立.
∴an=n+2.
(2)bn=$\left\{\begin{array}{l}\frac{1}{{({a_n}-1)({a_n}+1)}},n为奇数\\ 4(\frac{1}{2}{)^{a_n}},n为偶数\end{array}$,∴b2n-1=$\frac{1}{({a}_{2n-1}-1)({a}_{2n-1}+1)}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
b2n=$4×(\frac{1}{2})^{2n+2}$=$(\frac{1}{4})^{n}$.
∴数列{bn}的前2n项和T2n=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$+$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{1}{2}$-$\frac{1}{4n+6}$-$\frac{1}{3×{4}^{n}}$.

点评 本题考查了等比数列的通项公式及其前n项和公式、递推关系、“裂项求和”,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网