题目内容

设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈[-2,0)时,f(x)=2x,则f(2015)-f(2014)的值为(  )
A、
3
4
B、-
3
4
C、
1
4
D、
1
2
考点:函数奇偶性的性质,抽象函数及其应用
专题:函数的性质及应用
分析:根据条件f(x+4)=f(x)得到函数的周期是4,利用函数的奇偶性,将条件进行转化即可得到结论.
解答: 解:∵f(x+4)=f(x),
∴函数f(x)的周期是4,
∴f(2015)=f(504×4-1)=f(-1),
∵当x∈[-2,0)时,f(x)=2x
∴f(-1)=
1
2
,∴f(2015)=f(-1)=
1
2

∵f(2014)=f(504×4-2)=f(-2)=
1
4

∴f(2015)-f(2014)=
1
2
-
1
4
=
1
4

故选:C
点评:本题主要考查函数值的计算,根据函数奇偶性和周期性进行转化是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网