题目内容

12.已知函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函数f(x)的最小正周期和其图象对称中心的坐标;
(2)求函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

分析 (1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质可求对称中心的坐标;

(2)x∈$[\frac{π}{12},\frac{π}{4}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,即得到f(x)的取值范围.

解答 解:函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1,
化简可得:$f(x)=\frac{1+cos2x}{4}+\frac{{\sqrt{3}}}{4}sin2x+1=\frac{1}{2}sin(2x+\frac{π}{6})+\frac{5}{4}$.
(1)∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
令$2x+\frac{π}{6}=kπ,k∈Z$,
可得,对称中心的坐标:$x=\frac{kπ}{2}-\frac{π}{12},k∈Z$.
∴函数f(x)的对称中心$(\frac{kπ}{2}-\frac{π}{12},\frac{5}{4}),k∈Z$.
(2)∵$\frac{π}{12}≤x≤\frac{π}{4}$,
∴$\frac{π}{3}≤2x+\frac{π}{6}≤\frac{2π}{3}$
∴$\frac{{\sqrt{3}}}{2}≤sin(2x+\frac{π}{6})≤1$,
∴$\frac{{5+\sqrt{3}}}{4}≤\frac{1}{2}sin(2x+\frac{π}{6})+\frac{5}{4}≤\frac{7}{4}$,
故得函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域是$[\frac{5+\sqrt{3}}{4},\frac{7}{4}]$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网