题目内容

2.数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{5}$+…+$\frac{{a}_{n}}{2n-1}$=3n+1,则数列{an}的通项公式为an=(2n-1)•2•3n

分析 利用方程组法,两式相减可求数列{an}的通项公式.

解答 解:数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{5}$+…+$\frac{{a}_{n}}{2n-1}$=3n+1…①
则有:$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{5}$+…+$\frac{{a}_{n-1}}{2(n-1)-1}$=3n…②,
由①-②可得:$\frac{{a}_{n}}{2n-1}$=3n+1-3n=2•3n
∴an=(2n-1)•2•3n
故答案为:(2n-1)•2•3n

点评 本题主要考查数列通项公式的求解,构造了方程组,加减消项法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网